Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 208, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664789

RESUMO

BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) can undergo inadequate osteogenesis or excessive adipogenesis as they age due to changes in the bone microenvironment, ultimately resulting in decreased bone density and elevated risk of fractures in senile osteoporosis. This study aims to investigate the effects of osteocyte senescence on the bone microenvironment and its influence on BMSCs during aging. RESULTS: Primary osteocytes were isolated from 2-month-old and 16-month-old mice to obtain young osteocyte-derived extracellular vesicles (YO-EVs) and senescent osteocyte-derived EVs (SO-EVs), respectively. YO-EVs were found to significantly increase alkaline phosphatase activity, mineralization deposition, and the expression of osteogenesis-related genes in BMSCs, while SO-EVs promoted BMSC adipogenesis. Neither YO-EVs nor SO-EVs exerted an effect on the osteoclastogenesis of primary macrophages/monocytes. Our constructed transgenic mice, designed to trace osteocyte-derived EV distribution, revealed abundant osteocyte-derived EVs embedded in the bone matrix. Moreover, mature osteoclasts were found to release osteocyte-derived EVs from bone slices, playing a pivotal role in regulating the functions of the surrounding culture medium. Following intravenous injection into young and elderly mouse models, YO-EVs demonstrated a significant enhancement of bone mass and biomechanical strength compared to SO-EVs. Immunostaining of bone sections revealed that YO-EV treatment augmented the number of osteoblasts on the bone surface, while SO-EV treatment promoted adipocyte formation in the bone marrow. Proteomics analysis of YO-EVs and SO-EVs showed that tropomyosin-1 (TPM1) was enriched in YO-EVs, which increased the matrix stiffness of BMSCs, consequently promoting osteogenesis. Specifically, the siRNA-mediated depletion of Tpm1 eliminated pro-osteogenic activity of YO-EVs both in vitro and in vivo. CONCLUSIONS: Our findings suggested that YO-EVs played a crucial role in maintaining the balance between bone resorption and formation, and their pro-osteogenic activity declining with aging. Therefore, YO-EVs and the delivered TPM1 hold potential as therapeutic targets for senile osteoporosis.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Osteócitos , Osteogênese , Tropomiosina , Animais , Masculino , Camundongos , Adipogenia , Diferenciação Celular , Células Cultivadas , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteoclastos/metabolismo , Osteócitos/metabolismo , Osteoporose/metabolismo , Tropomiosina/metabolismo , Tropomiosina/genética
2.
Front Neurol ; 15: 1336385, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356893

RESUMO

Objective: Dementia is a significant public health concern, and mild cognitive impairment (MCI) serves as a transitional stage between normal aging and dementia. Among the various types of MCI, amnestic MCI (aMCI) has been identified as having a higher likelihood of progressing to Alzheimer's dimension. However, limited research has been conducted on the prevalence of aMCI in China. Therefore, the objective of this study is to investigate the prevalence of aMCI, examine its cognitive characteristics, and identify associated risk factors. Methods: In this cross-sectional study, we investigated a sample of 368 older adults aged 60 years and above in the urban communities of Chengdu, China. The participants underwent a battery of neuropsychological assessments, including the Mini-Mental State Examination (MMSE), the Clinical Dementia Rating (CDR), Auditory Verbal Learning Test (AVLT), Wechsler's Logical Memory Task (LMT), Boston Naming Test (BNT) and Trail Making Test Part A (TMT-A). Social information was collected by standard questionnaire. Multiple logistic regression analysis was utilized to screen for the risk and protective factors of aMCI. Results: The data analysis included 309 subjects with normal cognitive function and 59 with aMCI, resulting in a prevalence of 16.0% for aMCI. The average age of participants was 69.06 ± 7.30 years, with 56.0% being females. After controlling for age, gender and education, the Spearman partial correlation coefficient between various cognitive assessments and aMCI ranged from -0.52 for the long-term delayed recall scores in AVLT to 0.19 for the time-usage scores in TMT-A. The results indicated that all cognitive domains, except for naming scores (after semantic cue of BNT) and error quantity (in TMT-A), showed statistically significant associations with aMCI. Furthermore, the multiple logistic regression analysis revealed that older age (OR = 1.044, 95%CI: 1.002~1.087), lower educational level, and diabetes (OR = 2.450, 95%CI: 1.246~4.818) were risk factors of aMCI. Conclusion: This study found a high prevalence of aMCI among older adults in Chengdu, China. Individuals with aMCI exhibited lower cognitive function in memory, language, and executive domains, with long-term delayed recall showing the strongest association. Clinicians should prioritize individuals with verbal learning and memory difficulties, especially long-term delayed recall, in clinical practice.

3.
Redox Biol ; 69: 102975, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042059

RESUMO

Endometrial cancer (EC) is a prevalent gynecological malignancy worldwide, and 5-methylcytosine (m5C) modification of mRNA is a crucial epigenetic modification associated with the development and occurrence of several cancers. However, the precise function of m5C modification in EC remains elusive. This study aimed to investigate the expression and clinical significance of the primary m5C modification writer, NSUN2, in EC. Our findings indicated that NSUN2 exhibited a substantial up-regulation in EC as a result of an epigenetic augmentation in H3K4me3 levels within the promoter region, which was triggered by the down-regulation of KDM5A. Moreover, gain- and loss-of-function experiments revealed the role of NSUN2 in enhancing m5C modification of mRNA, thereby promoting EC cell proliferation. RNA bisulfite sequencing and transcriptomic sequencing were employed to elucidate the involvement of NSUN2 in the regulation of ferroptosis. Subsequent in vitro experiments confirmed that the knockdown of NSUN2 significantly up-regulated the levels of lipid peroxides and lipid ROS in EC cells, thereby augmenting the susceptibility of EC to ferroptosis. Mechanistically, NSUN2 stimulated the m5C modification of SLC7A11 mRNA, and the m5C reader YBX1 exhibited direct recognition and binding to the m5C sites on SLC7A11 mRNA via its internal cold shock domain (CSD), leading to an increase in SLC7A11 mRNA stability and elevated levels of SLC7A11. Additionally, rescue experiments showed that NSUN2 functioned as a suppressor of ferroptosis, which was dependent on SLC7A11. Overall, targeting the NSUN2/SLC7A11 axis inhibited tumor growth by increasing lipid peroxidation and ferroptosis of EC cells both in vitro and in vivo. Therefore, our study provides new insight into the role of NSUN2, suggesting that NSUN2 may serve as a prognostic biomarker and therapeutic target in patients with EC.


Assuntos
Neoplasias do Endométrio , Ferroptose , Humanos , Feminino , RNA Mensageiro/genética , Ferroptose/genética , Neoplasias do Endométrio/genética , RNA , Regulação para Baixo , Sistema y+ de Transporte de Aminoácidos/genética , Proteína 2 de Ligação ao Retinoblastoma , Metiltransferases
4.
Mater Today Bio ; 23: 100854, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38024846

RESUMO

Bone regeneration heavily relies on bone marrow mesenchymal stem cells (BMSCs). However, recruiting endogenous BMSCs for in situ bone regeneration remains challenging. In this study, we developed a novel BMSC-aptamer (BMSC-apt) functionalized hydrogel (BMSC-aptgel) and evaluated its functions in recruiting BMSCs and promoting bone regeneration. The functional hydrogels were synthesized between maleimide-terminated 4-arm polyethylene glycols (PEG) and thiol-flanked PEG crosslinker, allowing rapid in situ gel formation. The aldehyde group-modified BMSC-apt was covalently bonded to a thiol-flanked PEG crosslinker to produce high-density aptamer coverage on the hydrogel surface. In vitro and in vivo studies demonstrated that the BMSC-aptgel significantly increased BMSC recruitment, migration, osteogenic differentiation, and biocompatibility. In vivo fluorescence tomography imaging demonstrated that functionalized hydrogels effectively recruited DiR-labeled BMSCs at the fracture site. Consequently, a mouse femur fracture model significantly enhanced new bone formation and mineralization. The aggregated BMSCs stimulated bone regeneration by balancing osteogenic and osteoclastic activities and reduced the local inflammatory response via paracrine effects. This study's findings suggest that the BMSC-aptgel can be a promising and effective strategy for promoting in situ bone regeneration.

5.
Inflamm Res ; 72(10-11): 2053-2072, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37816881

RESUMO

OBJECTIVE: Nanoparticles (NPs) hold a great promise in combating rheumatoid arthritis, but are often compromised by their toxicities because the currently used NPs are usually synthesized by chemical methods. Our group has previously fabricated Ångstrom-scale silver particles (AgÅPs) and demonstrated the anti-tumor and anti-sepsis efficacy of fructose-coated AgÅPs (F-AgÅPs). This study aimed to uncover the efficacy and mechanisms of F-AgÅPs for arthritis therapy. METHODS: We evaluated the efficacy of F-AgÅPs in collagen-induced arthritis (CIA) mice. We also compared the capacities of F-AgÅPs, the commercial AgNPs, and the clinical drug methotrexate (MTX) in protecting against K/BxN serum-transfer arthritis (STA) mice. Moreover, we evaluated the effects of F-AgÅPs and AgNPs on inflammation, osteoclast formation, synoviocytes migration, and matrix metalloproteinases (MMPs) production in vitro and in vivo. Meanwhile, the toxicities of F-AgÅPs and AgNPs in vitro and in vivo were also tested. RESULTS: F-AgÅPs significantly prevented bone erosion, synovitis, and cartilage damage, attenuated rheumatic pain, and improved the impaired motor function in mouse models of CIA or STA, the anti-rheumatic effects of which were comparable or stronger than AgNPs and MTX. Further studies revealed that F-AgÅPs exhibited similar or greater inhibitory abilities than AgNPs to suppress inflammation, osteoclast formation, synoviocytes migration, and MMPs production. No obvious toxicities were observed in vitro and in vivo after F-AgÅPs treatment. CONCLUSIONS: F-AgÅPs can effectively alleviate arthritis without notable toxicities and their anti-arthritic effects are associated with the inhibition of inflammation, osteoclastogenesis, synoviocytes migration, and MMPs production. Our study suggests the prospect of F-AgÅPs as an efficient and low-toxicity agent for arthritis therapy.


Assuntos
Artrite Experimental , Artrite Reumatoide , Camundongos , Animais , Prata/uso terapêutico , Osteogênese , Inflamação/tratamento farmacológico , Inflamação/patologia , Artrite Reumatoide/tratamento farmacológico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Colágeno , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Metaloproteinases da Matriz
6.
Adv Sci (Weinh) ; 9(17): e2105316, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35508803

RESUMO

Both Alzheimer's disease (AD) and osteoporosis (OP) are common age-associated degenerative diseases and are strongly correlated with clinical epidemiology. However, there is a lack of clear pathological relationship between the brain and bone in the current understanding. Here, it is found that young osteocyte, the most abundant cells in bone, secretes extracellular vesicles (OCYYoung -EVs) to ameliorate cognitive impairment and the pathogenesis of AD in APP/PS1 mice and model cells. These benefits of OCYYoung -EVs are diminished in aged osteocyte-derived EVs (OCYAged -EVs). Based on the self-constructed OCY-EVs tracer transgenic mouse models and the in vivo fluorescent imaging system, OCY-EVs have been observed to be transported to the brain under physiological and pathological conditions. In the hippocampal administration of Aß40 induced young AD model mice, the intramedullary injection of Rab27a-shRNA adenovirus inhibits OCYYoung -EVs secretion from bone and aggravates cognitive impairment. Proteomic quantitative analysis reveals that OCYYoung -EVs, compared to OCYAged -EVs, enrich multiple protective factors of AD pathway. The study uncovers the role of OCY-EV as a regulator of brain health, suggesting a novel mechanism in bone-brain communication.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Envelhecimento , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Vesículas Extracelulares/metabolismo , Camundongos , Osteócitos/metabolismo , Proteômica
7.
Sci Adv ; 8(15): eabg8335, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35417243

RESUMO

Osteonecrosis of the femoral head (ONFH) commonly occurs after glucocorticoid (GC) therapy. The gut microbiota (GM) participates in regulating host health, and its composition can be altered by GC. Here, this study demonstrates that cohousing with healthy mice or colonization with GM from normal mice attenuates GC-induced ONFH. 16S rRNA gene sequencing shows that cohousing with healthy mice rescues the GC-induced reduction of gut Lactobacillus animalis. Oral supplementation of L. animalis mitigates GC-induced ONFH by increasing angiogenesis, augmenting osteogenesis, and reducing cell apoptosis. Extracellular vesicles from L. animalis (L. animalis-EVs) contain abundant functional proteins and can enter the femoral head to exert proangiogenic, pro-osteogenic, and antiapoptotic effects, while its abundance is reduced after exposure to GC. Our study suggests that the GM is involved in protecting the femoral head by transferring bacterial EVs, and that loss of L. animalis and its EVs is associated with the development of GC-induced ONFH.


Assuntos
Vesículas Extracelulares , Microbioma Gastrointestinal , Osteonecrose , Animais , Vesículas Extracelulares/metabolismo , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Camundongos , Osteonecrose/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
8.
Nat Commun ; 13(1): 1453, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304471

RESUMO

Adipocyte differentiation of bone marrow mesenchymal stem/stromal cells (BMSCs) instead of osteoblast formation contributes to age- and menopause-related marrow adiposity and osteoporosis. Vascular calcification often occurs with osteoporosis, a contradictory association called "calcification paradox". Here we show that extracellular vesicles derived from aged bone matrix (AB-EVs) during bone resorption favor BMSC adipogenesis rather than osteogenesis and augment calcification of vascular smooth muscle cells. Intravenous or intramedullary injection of AB-EVs promotes bone-fat imbalance and exacerbates Vitamin D3 (VD3)-induced vascular calcification in young or old mice. Alendronate (ALE), a bone resorption inhibitor, down-regulates AB-EVs release and attenuates aging- and ovariectomy-induced bone-fat imbalance. In the VD3-treated aged mice, ALE suppresses the ovariectomy-induced aggravation of vascular calcification. MiR-483-5p and miR-2861 are enriched in AB-EVs and essential for the AB-EVs-induced bone-fat imbalance and exacerbation of vascular calcification. Our study uncovers the role of AB-EVs as a messenger for calcification paradox by transferring miR-483-5p and miR-2861.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Animais , Matriz Óssea , Diferenciação Celular , Feminino , Camundongos , MicroRNAs/genética , Osteogênese
9.
Int Psychogeriatr ; 34(8): 735-742, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35086608

RESUMO

OBJECTIVE: The study's aims were (i) to identify the prevalence of health anxiety (HA) among the elderly in urban community healthcare centers and (ii) to determine whether HA is related to social, physical, or psychological factors. DESIGN: It is a population-based observational study. SETTING: Data were collected from urban community healthcare centers in Chengdu, China, from October 2016 to March 2017. PARTICIPANTS: A total of 893 participants aged ≥ 60 years. MEASUREMENTS: The Short HA Inventory was used for HA assessment. Mental health status was assessed using the Geriatric Depression Inventory and Mini-Mental State Examination. Other information was collected through face-to-face interviews. Data analysis was performed using SPSS 19.0. RESULTS: The point prevalence rate of HA was 9.53% (95%CI = 6.99%-12.07%). The number of chronic diseases was a positive factor associated with HA in a regression analysis. As compared with participants without chronic diseases, people with one (OR = 1.796; 95%CI = 0.546-5.909), two (OR = 2.922; 95%CI = 0.897-9.511), and three chronic diseases (OR = 6.448; 95%CI = 2.147-19.363) had higher odds of suffering from HA. CONCLUSIONS: The prevalence of HA was high in the elderly population. Certain physical conditions, such as having chronic diseases, were significant impact factors. More attention should be paid to the situation of HA in this population.


Assuntos
Transtornos de Ansiedade , Ansiedade , Idoso , Ansiedade/diagnóstico , Ansiedade/epidemiologia , Transtornos de Ansiedade/epidemiologia , Transtornos de Ansiedade/psicologia , Doença Crônica , Serviços de Saúde Comunitária , Humanos , Prevalência
10.
Oncogene ; 41(7): 1024-1039, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34997215

RESUMO

Cancer metabolic reprogramming enhances its malignant behaviors and drug resistance, which is regulated by POU domain transcription factors. This study explored the effect of POU domain class 2 transcription factor 1 (POU2F1) on metabolic reprogramming in colon cancer. The POU2F1 expression was analyzed in GEO dataset, TCGA cohorts and human colon cancer tissues by bioinformatics and immunohistochemistry. The effects of altered POU2F1 expression on proliferation, glucose metabolism and oxaliplatin sensitivity of colon cancer cells were tested. The impacts of POU2F1 on aldolase A (ALDOA) expression and malignant behaviors of colon cancer cells were examined. We found that up-regulated POU2F1 expression was associated with worse prognosis and oxaliplatin resistance in colon cancer. POU2F1 enhanced the proliferation, aerobic glycolysis and the pentose phosphate pathway (PPP) activity, but reduced oxidative stress and apoptosis in colon cancer cells, dependent on up-regulating ALDOA expression. Mechanistically, POU2F1 directly bound to the ALDOA promoter to enhance the ALDOA promoter activity in colon cancer cells. Moreover, activation of the POU2F1-ALDOA axis decreased the sensitivity to oxaliplatin in colon cancer cells. These data indicate that the POU2F1-ALDOA axis promotes the progression and oxaliplatin resistance by enhancing metabolic reprogramming in colon cancer. Our findings suggest that the POU2F1-ALDOA axis may be new therapeutic targets to overcome oxaliplatin resistance in colon cancer.


Assuntos
Via de Pentose Fosfato
12.
Adv Sci (Weinh) ; 8(24): e2100808, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34719888

RESUMO

A differentiation switch of bone marrow mesenchymal stem/stromal cells (BMSCs) from osteoblasts to adipocytes contributes to age- and menopause-associated bone loss and marrow adiposity. Here it is found that osteocytes, the most abundant bone cells, promote adipogenesis and inhibit osteogenesis of BMSCs by secreting neuropeptide Y (NPY), whose expression increases with aging and osteoporosis. Deletion of NPY in osteocytes generates a high bone mass phenotype, and attenuates aging- and ovariectomy (OVX)-induced bone-fat imbalance in mice. Osteocyte NPY production is under the control of autonomic nervous system (ANS) and osteocyte NPY deletion blocks the ANS-induced regulation of BMSC fate and bone-fat balance. γ-Oryzanol, a clinically used ANS regulator, significantly increases bone formation and reverses aging- and OVX-induced osteocyte NPY overproduction and marrow adiposity in control mice, but not in mice lacking osteocyte NPY. The study suggests a new mode of neuronal control of bone metabolism through the ANS-induced regulation of osteocyte NPY.


Assuntos
Adipócitos/metabolismo , Osso e Ossos/metabolismo , Neuropeptídeo Y/metabolismo , Osteoblastos/metabolismo , Osteoporose/metabolismo , Adipogenia/fisiologia , Animais , Osso e Ossos/fisiopatologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteócitos/metabolismo , Osteogênese/fisiologia , Osteoporose/fisiopatologia
13.
Theranostics ; 11(17): 8152-8171, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34373734

RESUMO

Serious infection caused by multi-drug-resistant bacteria is a major threat to human health. Bacteria can invade the host tissue and produce various toxins to damage or kill host cells, which may induce life-threatening sepsis. Here, we aimed to explore whether fructose-coated Ångstrom-scale silver particles (F-AgÅPs), which were prepared by our self-developed evaporation-condensation system and optimized coating approach, could kill bacteria and sequester bacterial toxins to attenuate fatal bacterial infections. Methods: A series of in vitro assays were conducted to test the anti-bacterial efficacy of F-AgÅPs, and to investigate whether F-AgÅPs could protect against multi-drug resistant Staphylococcus aureus (S. aureus)- and Escherichia coli (E. coli)-induced cell death, and suppress their toxins (S. aureus hemolysin and E. coli lipopolysaccharide)-induced cell injury or inflammation. The mouse models of cecal ligation and puncture (CLP)- or E. coli bloodstream infection-induced lethal sepsis were established to assess whether the intravenous administration of F-AgÅPs could decrease bacterial burden, inhibit inflammation, and improve the survival rates of mice. The levels of silver in urine and feces of mice were examined to evaluate the excretion of F-AgÅPs. Results: F-AgÅPs efficiently killed various bacteria that can cause lethal infections and also competed with host cells to bind with S. aureus α-hemolysin, thus blocking its cytotoxic activity. F-AgÅPs inhibited E. coli lipopolysaccharide-induced endothelial injury and macrophage inflammation, but not by directly binding to lipopolysaccharide. F-AgÅPs potently reduced bacterial burden, reversed dysregulated inflammation, and enhanced survival in mice with CLP- or E. coli bloodstream infection-induced sepsis, either alone or combined with antibiotic therapy. After three times injections within 48 h, 79.18% of F-AgÅPs were excreted via feces at the end of the 14-day observation period. Conclusion: This study suggests the prospect of F-AgÅPs as a promising intravenous agent for treating severe bacterial infections.


Assuntos
Toxinas Bacterianas/antagonistas & inibidores , Sepse/tratamento farmacológico , Prata/farmacologia , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Modelos Animais de Doenças , Escherichia coli/efeitos dos fármacos , Frutose/farmacologia , Proteínas Hemolisinas/antagonistas & inibidores , Inflamação/tratamento farmacológico , Lipopolissacarídeos/antagonistas & inibidores , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Nanopartículas/uso terapêutico , Sepse/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos
14.
Geriatr Nurs ; 42(5): 1093-1098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34274686

RESUMO

This study aimed to explore the threshold of self-rating AD8 in mild cognitive impairment (MCI) and dementia screening among community-dwelling older adults with and without education. 523 participants in Chengdu, China, were recruited: 346 with normal cognitive function, 160 with MCI and 17 with dementia. At the cut-off score of 2, the area under the receiver operator characteristic curves (AUC) of self-rating AD8 for MCI and dementia screening was 0.607 and 0.931 regardless of educational level, respectively. Grouping by educational level, the cut-off in MCI screening was 1 for literate (AUC=0.662) and 2 for illiterate individuals (AUC=0.588). For dementia screening, the cut-off was 2 for illiterate (AUC=0.912) and 4 for literate individuals (AUC=0.963). We concluded that the self-rating AD8 was ideal for dementia screening in community-dwelling older adults, with a cut-off score of 2 for illiterate and 4 for literate people, while its effectiveness for MCI screening required further evaluation.


Assuntos
Disfunção Cognitiva , Demência , Idoso , Cognição , Disfunção Cognitiva/diagnóstico , Demência/diagnóstico , Escolaridade , Humanos , Programas de Rastreamento
15.
Mol Cell Endocrinol ; 534: 111373, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34174367

RESUMO

Fracture healing is a complicated process affected by many factors, such as inflammatory responses and angiogenesis. Omentin-1 is an adipokine with anti-inflammatory properties, but whether omentin-1 affects the fracture healing process is still unknown. Here, by using global omentin-1 knockout (omentin-1-/-) mice, we demonstrated that omentin-1 deficiency resulted in delayed fracture healing in mice, accompanied by increased inflammation and osteoclast formation, and decreased production of platelet-derived growth factor-BB (PDGF-BB) and osteogenesis-promoting vessels that are strongly positive for CD31 and Endomucin (CD31hiEmcnhi) in the fracture area. In vitro, omentin-1 treatment suppressed the ability of the tumor necrosis factor-α (TNF-α)-activated macrophages to stimulate multi-nuclear osteoclast formation, resulting in a significant increase in the generation of mono-nuclear preosteoclasts and PDGF-BB, a pro-angiogenic protein that is abundantly secreted by preosteoclasts. PDGF-BB significantly augmented endothelial cell proliferation, tube formation and migration, whereas direct treatment with omentin-1 did not induce obvious effects on angiogenesis activities of endothelial cells. Our study suggests a positive role of omentin-1 in fracture healing, which may be associated with the inhibition of inflammation and stimulation of preosteoclast PDGF-BB-mediated promotion of CD31hiEmcnhi vessel formation.


Assuntos
Citocinas/genética , Fraturas do Fêmur/genética , Consolidação da Fratura , Proteínas Ligadas por GPI/genética , Lectinas/genética , Sialoglicoproteínas/metabolismo , Animais , Movimento Celular , Modelos Animais de Doenças , Feminino , Fraturas do Fêmur/etiologia , Fraturas do Fêmur/imunologia , Técnicas de Inativação de Genes , Camundongos , Osteoclastos/metabolismo , Osteogênese , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Células RAW 264.7 , Microtomografia por Raio-X
16.
Front Oncol ; 11: 674426, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079763

RESUMO

RAS-related C3 botulinum toxin substrate 1 (Rac.1) is one of the important members of Rho GTPases. It is well known that Rac1 is a cytoskeleton regulation protein that regulates cell adhesion, morphology, and movement. Rac1 is highly expressed in different types of tumors, which is related to poor prognosis. Studies have shown that Rac1 not only participates in the tumor cell cycle, apoptosis, proliferation, invasion, migration and angiogenesis, but also participates in the regulation of tumor stem cell, thus promoting the occurrence of tumors. Rac1 also plays a key role in anti-tumor therapy and participates in immune escape mediated by the tumor microenvironment. In addition, the good prospects of Rac1 inhibitors in cancer prevention and treatment are exciting. Therefore, Rac1 is considered as a potential target for the prevention and treatment of cancer. The necessity and importance of Rac1 are obvious, but it still needs further study.

17.
Adv Sci (Weinh) ; 8(9): 2004831, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33977075

RESUMO

Recently, the gut microbiota (GM) has been shown to be a regulator of bone homeostasis and the mechanisms by which GM modulates bone mass are still being investigated. Here, it is found that colonization with GM from children (CGM) but not from the elderly (EGM) prevents decreases in bone mass and bone strength in conventionally raised, ovariectomy (OVX)-induced osteoporotic mice. 16S rRNA gene sequencing reveals that CGM reverses the OVX-induced reduction of Akkermansia muciniphila (Akk). Direct replenishment of Akk is sufficient to correct the OVX-induced imbalanced bone metabolism and protect against osteoporosis. Mechanistic studies show that the secretion of extracellular vesicles (EVs) is required for the CGM- and Akk-induced bone protective effects and these nanovesicles can enter and accumulate into bone tissues to attenuate the OVX-induced osteoporotic phenotypes by augmenting osteogenic activity and inhibiting osteoclast formation. The study identifies that gut bacterium Akk mediates the CGM-induced anti-osteoporotic effects and presents a novel mechanism underlying the exchange of signals between GM and host bone.


Assuntos
Densidade Óssea/fisiologia , Osso e Ossos/metabolismo , Vesículas Extracelulares/metabolismo , Microbioma Gastrointestinal/fisiologia , Osteoporose/metabolismo , Osteoporose/fisiopatologia , Fatores Etários , Idoso , Animais , Pré-Escolar , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
18.
Int J Nanomedicine ; 16: 2949-2963, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33907401

RESUMO

PURPOSE: Prostate cancer (PCa) is one of the most common malignancies in males. Despite the success of immunotherapy in many malignant cancers, strategies are still needed to improve therapeutic efficacy in PCa. This study aimed to investigate the effects of Akkermansia muciniphila-derived extracellular vesicles (Akk-EVs) on PCa and elucidate the underlying immune-related mechanism. METHODS: Akk-EVs were isolated by ultracentrifugation and intravenously injected to treat syngeneic PCa-bearing immune-competent mice. Immunophenotypic changes in immune cells, such as cytotoxic T lymphocytes and macrophages, were measured via flow cytometry analysis. Histological examination was used to detect morphological changes in major organs after Akk-EVs treatments. In vitro, flow cytometry was performed to confirm the effects of Akk-EVs on the activation of CD8+ T cells. Quantitative PCR and immunofluorescence staining were carried out to test the impact of Akk-EVs on macrophage polarization. Cell counting kit-8 (CCK-8) analysis, colony formation assays, and scratch wound healing assays were conducted to assess the effects of Akk-EVs-treated macrophages on the proliferation and invasion of PCa cells. CCK-8 assays also confirmed the impact of Akk-EVs on the viability of normal cells. RESULTS: Intravenous injection of Akk-EVs in immune-competent mice reduced the tumor burden of PCa without inducing obvious toxicity in normal tissues. This treatment elevated the proportion of granzyme B-positive (GZMB+) and interferon γ-positive (IFN-γ+) lymphocytes in CD8+ T cells and caused macrophage recruitment, with increased tumor-killing M1 macrophages and decreased immunosuppressive M2 macrophages. In vitro, Akk-EVs increased the number of GZMB+CD8+ and IFN-γ+CD8+ T cells and M1-like macrophages. In addition, conditioned medium from Akk-EVs-treated macrophages suppressed the proliferation and invasion of prostate cells. Furthermore, the effective dose of Akk-EVs was well-tolerated in normal cells. CONCLUSION: Our study revealed the promising prospects of Akk-EVs as an efficient and biocompatible immunotherapeutic agent for PCa treatment.


Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Vesículas Extracelulares/imunologia , Macrófagos/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Akkermansia/química , Animais , Antineoplásicos Imunológicos/química , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Imunofenotipagem , Imunoterapia/métodos , Interferon gama/metabolismo , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia
19.
Onco Targets Ther ; 14: 1727-1735, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33707955

RESUMO

Various stimuli induce an unfolded protein response to endoplasmic reticulum stress, accompanied by the expression of endoplasmic reticulum molecular chaperones. Hypoxia-upregulated 1 gene (HYOU1) is a chaperone protein located in the endoplasmic reticulum. HYOU1 expression was upregulated in many diseases, including various cancers and endoplasmic reticulum stress-related diseases. HYOU1 does not only play an important protective role in the occurrence and development of tumors, but also is a potential therapeutic target for cancer. HYOU1 may also be used as an immune stimulation adjuvant because of its anti-tumor immune response, and a molecular target for therapy of many endoplasmic reticulum-related diseases. In this article, we summarize the updates in HYOU1 and discuss the potential therapeutic effects of HYOU1.

20.
Mol Cancer ; 20(1): 28, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33546704

RESUMO

The overlapping metabolic reprogramming of cancer and immune cells is a putative determinant of the antitumor immune response in cancer. Increased evidence suggests that cancer metabolism not only plays a crucial role in cancer signaling for sustaining tumorigenesis and survival, but also has wider implications in the regulation of antitumor immune response through both the release of metabolites and affecting the expression of immune molecules, such as lactate, PGE2, arginine, etc. Actually, this energetic interplay between tumor and immune cells leads to metabolic competition in the tumor ecosystem, limiting nutrient availability and leading to microenvironmental acidosis, which hinders immune cell function. More interestingly, metabolic reprogramming is also indispensable in the process of maintaining self and body homeostasis by various types of immune cells. At present, more and more studies pointed out that immune cell would undergo metabolic reprogramming during the process of proliferation, differentiation, and execution of effector functions, which is essential to the immune response. Herein, we discuss how metabolic reprogramming of cancer cells and immune cells regulate antitumor immune response and the possible approaches to targeting metabolic pathways in the context of anticancer immunotherapy. We also describe hypothetical combination treatments between immunotherapy and metabolic intervening that could be used to better unleash the potential of anticancer therapies.


Assuntos
Suscetibilidade a Doenças , Metabolismo Energético , Imunidade , Neoplasias/etiologia , Neoplasias/metabolismo , Imunidade Adaptativa , Biomarcadores , Biomarcadores Tumorais , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunidade Inata , Redes e Vias Metabólicas , Neoplasias/patologia , Nutrientes/metabolismo , Transdução de Sinais , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...